
MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

VASYL’ STUS’ DONETSK NATIONAL UNIVERSITY

Elton Mzamo Dube

Allowed for defence:

Head of Information Technologies

Department

PhD, associate professor

_________ Tetyana Neskorodieva

«_____» June 2021

DETECTION OF MASKED BAD WORDS ІN SOCIAL NETWORK

CONTENT

Specialty 122 Computer Science

Bachelor’s Thesis

Supervisor:

Serhiy Shtovba, Professor on Information Technologies Department

DrSc, Full Professor

Grade:

Head of Examination Comission:

Vinnytsia – 2021

1

ABSTRACT

Elton M. Dube Detection of masked bad words іn social network content. Bachelor’s

Thesis. Specialty 122 "Computer Science", educational program "Computer Science".

Vasyl’ Stus Donetsk National University, Vinnytsia, 2021.

In the qualification (bachelor's) work the problem of masked bad words detection

was investigated and we looked at previous models that were used for the task of

detecting bad words. A proposal was made for a technique that would be optimal to

detecting masked bad word e.g., fvck, b1tch.

Keywords: toxic content detection, social network, confusion matrix, out of

vocabulary words.

33 Pages, 2 Tables, _4 Figures, 20 Ref.

2

Contents
Introduction .. 4

Chapter 1 .. 5

A survey of techniques for toxic content detection in social networks 5

1.1 A study of toxic content on social media .. 5

1.2 Techniques for toxic content detections .. 7

1.2.1 Crowdsourcing ... 7

1.2.2 Sentence embeddings ... 8

1.2.3 Perspective and BERT ... 8

1.2.4 Deep machine learning ... 9

1.2.5 Traditional Machine Learning .. 9

1.4 Ideas for proposed technique for masked bad words detection 12

1.5 Conclusions on the first Chapter.. 14

Chapter 2 .. 15

Information resources, models and algorithms for masked bad words detection 15

2.1 Bad words vocabularies ... 15

2.1.1 Bad Bad Words dataset. ... 15

2.1.2 YouTube dataset ... 15

2.1.3 Twitter dataset .. 16

2.2 Confusion Matrix ... 17

2.3 Metrics for words similarity ... 19

2.3.1 Levenshtein Distance .. 19

2.3.2 Hamming distance ... 21

2.3.3 Damerau–Levenshtein distance ... 21

2.3.4 Q-gram ... 21

2.3.5 Cosine similarity .. 22

2.3.6 Dice coefficient ... 23

2.4 Algorithms for masked bad words detection ... 24

2.5 Conclusions on the second Chapter ... 26

Chapter 3 .. 27

3

Developing the software ... 27

3.1 Choosing Developing tools .. 27

3.2 Future work and developments .. 30

References .. 30

Appendix A .. 33

4

Introduction

With the increase in popularity and availability of different social media platforms, more

and more people are finding it easier and easier to communicate with each other all over

the world. That is just one of the highlights of social media. Now let us look at the

downside of social media. While many people use it for simple communication with

friends and family and keeping up with the latest trends and news, others on the other

hand are using it for all the wrong reasons including bullying and circulating false

information. All of this has led to the development and improvements of things such as

the detection of abusive language, hate speech, cyberbullying, and trolling amongst

others. Social Media Sites are being tasked to continuously improve their cybersecurity

measures to protect their users from cyberbullying.

With the world ever evolving and humans becoming more and more sophisticated and

intelligent, this has led to cyberbullies adapting to these restrictions put in place by

social media sites and now masking bad words, profanity and hate speech, and this has

made it hard for some models to detect some bad words and profanity.

With the help of machine learning we have come up with ways to detect masked bad

words in social media content and in this report, we will look at some models that are

being used and how we can further improve them in the future.

Some examples of masked bad words that are hard to detect automatically include the

following: b1tch, 5hit, A55, D!ck, fvck, cr@p, D1ps#!t, pr1ck, idi0t, idl0t, Pus*y. All

these words are out of vocabulary, but a human recognizes easily.

5

Chapter 1

A survey of techniques for toxic content detection in social networks

1.1 A study of toxic content on social media

Starting from the very basic question that one might ask, which is “What is a

social network?”. In simple terms it can be described as a dedicated website or other

application which enables users to communicate with each other by posting

information, comments, messages, images, etc.

Social networking now becomes the use of Internet-based social media sites to

stay connected with friends, family, colleagues, customers, or clients. Social

networking can have a social purpose, a business purpose, or both, through sites like

Facebook, Twitter, LinkedIn, and Instagram.

The reasons behind the huge popularity of social media these days is the fact

that there are a lot of opportunities to meet new people, most of the social

networking sites are user-friendly, one can find groups that share their interests,

these sites are free to use, they help with job markets and help businesses to reach

out to their clients and potential clients.

These are just the few of many benefits to social networks. There is also a bad

side to these social networks. For the purpose of this research, we will look at

specifically toxic content.

Toxic content comes in the form of profanity, use of abusive words or

language in comments, threats, shameful speech etc.

Some examples of toxic content are as follows:

6

Fig. 1.1 – Examples of toxic comments [3]

While many people use social networks for simple communication with friends

and family and keeping up with the latest trends and news, others on the other hand are

using it for all the wrong reasons including bullying and circulating false information.

All of this has led to the development and improvements of things such as the detection

of abusive language, hate speech, cyberbullying, and trolling amongst others. Social

Media Sites are being tasked to continuously improve their cybersecurity measures to

protect their users from cyberbullying.

With the world ever evolving and humans becoming more and more sophisticated

and intelligent, this has led to cyberbullies adapting to these restrictions put in place by

social media sites and now masking bad words, profanity and hate speech, and this has

made it hard for some models to detect some bad words and profanity.

With the help of machine learning we have come up with ways to detect masked

bad words in social media content and in this report, we will look at some models that

are being used and how we can further improve them in the future.

Some examples of masked bad words that are hard to detect automatically include

the following: b1tch, 5hit, A55, D!ck, fvck, cr@p, D1ps#!t, pr1ck, idi0t, idl0t, Pus*y.

All these words are out of vocabulary, but a human recognizes easily.

7

1.2 Techniques for toxic content detections

1.2.1 Crowdsourcing

With more room for improvement, we have seen a few models/techniques being

developed over time. In 2012 Sara Owsley Sood and other co-authors [1], developed a

technique that used Crowdsourcing as its main model.

In this technique there was use of a large dataset of comments from a medium

sized social news site. As with most social news sites, users of this site contribute links

to news items (i.e., stories, videos and images), and other community members then

comment on these items. The dataset contains all comments posted between March and

May 2010. The set of 1,655,131 comments span 168,973 threads. Each thread represents

a news item; that is, a story, image or video contributed by a community member.

Some methods that were taken into consideration in this technique include:

1) List-based Approaches in order to determine if a document (e.g., email, comment,

tweet, blog) contains profanity, these systems simply examine each word in the

document. If any of the words are present on a list of profane terms, then the

document is labeled as profane.

2) Levenshtein Edit Distance, after first checking to see if a word exists on a

profanity list, then a second pass is made to look for variations of the words. To

identify these instances of profanity, utilization of a tool to calculate the

Levenshtein edit distance between two terms is used [20]. This edit distance

measures the number of letter insertions, deletions and changes to transform one

word into another. To check whether a term might be profanity, a calculation of

the edit distance is made from that term to each term on a list of known profane

terms. If the edit distance is equal to the number of punctuation marks in the term,

or if it is below some threshold (which varies by the term length), then it is

flagged as profane.

3) Support Vector Machines, the above two systems utilize lists of known profane

terms and tools that attempt to find variations in these terms. However, as profane

language evolves over time, these lists must be updated to catch new cases. A

more robust approach may be to look at the context in which the profane language

occurs. As such, support vector machines were used, known for their performance

in text classification [19], to learn a model of profanity. The 6500 profanity

8

labeled comments from the dataset described above were used. Using a bag of

words approach, it was found that the optimal features were bigrams and stems

using a binary presence representation and a linear kernel.

This model used useful features like Bigrams, but this model had a very low recall

performance, and the system could not be optimized for a high recall performance.

1.2.2 Sentence embeddings

In 2019 we saw the development of a model that used Sentence embeddings from

Vijayasaradhi Indurthi and other co-authors [2], and this model used word embeddings

and sentence embedding as main features.

The SEMEVAL-2019 OFFENSEVAL dataset is used, that is available to

participants and it contains 13240 tweets; The OFFENSEVAL task consists of three

subtasks. Subtask A aims at the detection of offensive language (OFF or NOT). Subtask

B aims at categorizing offensive language as targeting a specific entity (TIN) or not

(UNT). Subtask C aims to identify whether the target of an offensive post is an

individual (IND), a group (GRP), or unknown (OTH).

One drawback to this model is that the class distribution was highly imbalanced

due to which there was a likelihood of a bias being introduced by the training

algorithms.

1.2.3 Perspective and BERT

Another model that was proposed in 2019 was Perspective & Bert by John

Pavlopoulos and other co-authors [3], and This model made use of character n-grams,

word-length distribution, extra-linguistic features and geographic features.

The SEMEVAL-2019 OFFENSEVAL dataset is used, that is available to

participants and it contains 13240 tweets; The OFFENSEVAL task consists of three

subtasks. Subtask A aims at the detection of offensive language (OFF or NOT). Subtask

B aims at categorizing offensive language as targeting a specific entity (TIN) or not

(UNT). Subtask C aims to identify whether the target of an offensive post is an

individual (IND), a group (GRP), or unknown (OTH).

9

Although good it had a few drawbacks, and one was that the geographic and word

length distribution have little to no positive effect on performance and rarely improve

over character-level features.

1.2.4 Deep machine learning

A Deep machine learning model was proposed by D. Thenmozhi and other co-

authors [4]. This model made use of Word embeddings, Multinominal Naïve Bayes,

SVM, Stochastic Gradient Descent, Bag of words, Bi-gram features, Skip-grams,

clustering-based word representations.

The SEMEVAL-2019 OFFENSEVAL dataset is used here also.

In deep learning (DL) approach, the tweets are vectorized using word embeddings

and are fed into encoding and decoding processes. Bidirectional LSTMs are used for

encoding and decoding processes. A 2-layer LSTM is used for this. The output is given

to softmax layer by incorporating attention wrapper to obtain the OffensEval class

labels.

The drawback observed from the results of this model was that the deep learning

model could not learn the features appropriately due to less domain knowledge imparted

by the smaller dataset used.

1.2.5 Traditional Machine Learning

In 2020 a Traditional Machine Learning Model was proposed by Varsha Pathak

and co-authors [5]. This model saw the use of features like Word n-gram, character n-

gram, combined word, custom word embedding.

In this work supervised machine learning is used by experimenting on various

Classifiers. The datasets were preprocessed for removal of noisy elements from its

contents. Appropriate features are extracted to enable the machine to learn offensive

term patterns. Finally, the performances of different Classifiers and feature models are

compared using standard measures to choose the best performing model.

 Drawback to this model that we observed was that it cannot learn offensive terms

from the text contents or from speech irrespective of the language.

1.3 Problems with masked bad words detection

10

Social Media Sites are being tasked to continuously improve their cybersecurity

measures to protect their users from cyberbullying.

This is in line with the fact that humans are intelligent beings and will always find

a way around a problem. In the past we have seen many models being used to identify

profanity, hate speech, toxicity in comments etc. but there is a slight flaw in these

systems.

Humans have adapted and realized that by masking their bad words these systems

are unable to detect the bad word but to the human eye it is clearly visible that it is a bad

word. So, our task now is to find a way to efficiently detect masked bad words and to

continuously learn the ways in which bad words are being masked so that our system

can easily identify masked bad words in future with great effectiveness.

One problem that we came across comes from “Using crowdsourcing to improve

profanity detection” by Sara Owsley Sood [2], In this article it was identified that using

a list-based approach did not suffice. This is because in order to determine if a document

(e.g., email, comment, tweet, blog) contains profanity, these systems simply examine

each word in the document. If any of the words are present on a list of profane terms,

then the document is labeled as profane.

This approach does not take into consideration the context in which a certain word

was used in the comment and since it is only looking at a known list of profane terms

and bad words it cannot identify a bad word if it is masked or intentionally misspelled.

In order to tackle these problems, we see that after first checking to see if a word

exists on a profanity list, then a second pass is made to look for variations of the words.

To identify these instances of profanity, utilization of a tool to calculate the Levenshtein

edit distance between two terms is used (Levenshtein 1966).

 To check whether a term might be profanity, a calculation of the edit distance is

made from that term to each term on a list of known profane terms. If the edit distance is

equal to the number of punctuation marks in the term, or if it is below some threshold

then it is flagged as profane.

This approach then improves the detection of intentionally misspelled bad words

found in the comments.

Another problem that was encountered in the survey is that from the article on

Sentence embeddings from Vijayasaradhi Indurthi and other co-authors [3]. In this

article the authors used sentence embedding and word embedding as main features in

their task.

The task here was split into 3 subtasks that had to classify profanity according to

whether it was offensive or not and so on. The problem that was observed was in the

11

training data. We observed that the class distribution was highly imbalanced due to

which there was a likelihood of a bias being introduced by the training algorithms.

Although the problem was not tackled immediately during this task, it was

included in future work where the authors plan to explore SMOTE [6] for further

making the class labels more balanced and then train the classification which will

prevent a bias towards the unbalanced classes in the training data.

In the model that was proposed in 2019 Perspective & Bert by John Pavlopoulos

and other co-authors [3] we saw the use of character n-grams, word-length distribution,

extra-linguistic features and geographic features.

Some of these features were quite useful and some of them not so much. One

drawback that was noted was that that the geographic and word length distribution have

little to no positive effect on performance and rarely improve over character-level

features.

In the Deep machine learning model that was proposed by D. Thenmozhi and

other co-authors [4] we saw that his model made use of Word embeddings,

Multinominal Naïve Bayes, SVM, Stochastic Gradient Descent, Bag of words, Bi-gram

features, Skip-grams, clustering-based word representations.

One drawback that stood out was that from the results of this model the deep

learning model could not learn the features appropriately due to less domain knowledge

imparted by the smaller dataset used.

In order to tackle this problem, we will need to introduce a larger dataset that will

be sufficient to train our model and in turn give us more reliable results at the end of the

day.

In the Traditional Machine Learning Model which was proposed by Varsha

Pathak and co-authors [5] this model saw the use of features like Word n-gram,

character n-gram, combined word, custom word embedding.

One notable drawback to this model was that that it cannot learn offensive terms

from the text contents or from speech irrespective of the language.

This is a problem because some terms may not be offensive depending on their

context in which they are used, an example being the word “bitch” (female dog), if you

consider the context of the whole sentence then you will determine whether the term is

offensive or not.

12

In order to tackle this, we will need to consider text contents and the specific

language to have a clear understanding.

If we are now taking into consideration all the proposed models and techniques

used in the past, we will see the need to have a new approach to bad words detection.

The reason why we need a new approach is because with the world ever changing and

evolving, we also need to adapt our technology to keep up with that change.

Humans are not only intentionally misspelling bad words, but they are now using

some other special characters that are not alphabetical e.g., @, $, #, etc. but are just

visually like alphabetic characters, so in order to detect bad words that are masked in

this way we need to train our models to be able to identify all these adaptations.

1.4 Ideas for proposed technique for masked bad words detection

Our approach to detecting the masked bad words is as follows. The first task at

hand will be to source out a vocabulary of known bad words in English that we can use

for comparisons later. For this we found the dataset “Bad Bad Words” on Kaggle, and

the purpose of this dataset is to support the Toxic Comment Classification Competition.

It has a wide range of words, i.e., close to 2000 words.

Now in order to analyze the data we will use embedding algorithms like

Word2Vec because it is a statistical method for efficiently learning a standalone word

embedding from a text corpus as there is no need to analyze a full comment but rather

just a single isolated word. After this we will have to do some comparisons and for this,

we will use the Levenshtein distance. The Levenshtein distance is one of the methods to

calculate the similarity between two strings. It is calculated by the operation how many

times the character is inserted, deleted or replaced when converting one string to the

other.

We also need to have a confusion matrix which is a very crucial part of the whole

technique because the purpose of this confusion matrix is to detect hidden words that

social media users have masked using various symbols e.g., b1tch. The matrix will give

us a probability between 0 and 1 and we need to incorporate that probability into the

Levenshtein distance. Fig. 2 shows an example of this matrix.

13

We will also be looking at Support Vector Machines (SVMs) so that we can make

sure that our model is able to learn bad words with time.

A more robust approach will be to look at the context in which the profane

language occurs. As such, support vector machines are to be considered because of their

known performance in text classification (Joachims 1998), in order to learn a model of

profanity

Fig. 1.2 – The most confused symbols [7]

14

1.5 Conclusions on the first Chapter

The importance of our task of bad words detection is quite simple and straightforward.

As we have discussed, humans are ever evolving and adapting, and this poses a problem

for systems that cannot adapt together with human adaptations. Over the years we have

seen the task of bad words detection being tackled in many ways, some successful and

some not as much. The importance of bad words detection comes to tackle

cyberbullying and online hate speech among other things. Social media users have seen

that social media platforms can easily identify know bad words and remove comments

that involve these bad words or any other form of hate speech. This has led to social

media users now masking their bad words by either intentionally misspelling bad words

or using some other special characters that are visually like letters of the English

alphabet to mask their bad words. This leads us to the task at hand, which is improve on

the detection of bad words by adapting our systems to be able to recognize masked bad

words.

The current approach to bad words detection is efficient in detecting known bad words

from known bad words vocabularies but it fails to detect when there is a masked bad

word. This is because masked bad words are easily identifiable to the human reader but

are not easy to recognize by a computer.

This then leads us to our approach of masked bad words detection in which we will

work with known bad words vocabularies in order to train our algorithm. In order to

detect masked bad words, we will implement a confusion matrix of the English alphabet

and some other characters that are visually similar to the letters of the English alphabet.

Probabilities obtained from this confusion matrix will help us when incorporated with

the Lavenshtein Distance to calculate the visual similarity of words found in our known

bad words’ vocabularies and our masked bad word.

Once we have successfully detected our masked bad words we will then use these new

words to further train our algorithm so that it can easily adapt with time also therefore

making the task of masked bad words detection easier for our algorithm.

15

Chapter 2

Information resources, models and algorithms for masked bad words

detection

2.1 Bad words vocabularies

2.1.1 Bad Bad Words dataset.

For this task we found the dataset “Bad Bad Words” [14] on Kaggle, and the

purpose of this dataset is to support the Toxic Comment Classification

Competition. It has a wide range of words, i.e., close to 2000 words.

In this dataset we have a wide range of words but take note that not all of them are

bad words, but they can be classified as bad words when taking into consideration

the context in which they are used.

This list of bad words does not contain any intentionally misspelled bad words or

any masked bad words but only contains correctly spelled words without any

special characters.

2.1.2 YouTube dataset

In dataset ICWSM‑ 18‑ SALMINEN [11], there are 3221 manually labeled

comments posted on a YouTube channel of an online news and media company.

Salminen et al. [12] note that many of the comments that are posted as reactions

to the content in this channel are hateful, which makes the dataset promising for

investigating online hate.

The researchers used manual coding to annotate the data into hateful and non-

hateful comments (as well as subsequent themes based on the target of the hate;

however, this information is not used for our classifier). They provide detailed

coding guidelines as well as inter-rater agreement measurement (agreement score

= 75.3%), which the researchers interpret as substantial agreement. The agreement

score was calculated by dividing the number of labels where two or more coders

agreed by the number of possible values. The calculation was done for each coded

item, and the item-based agreements were averaged to output the overall

agreement.

Overall, the dataset includes purposeful (i.e., intentionally hurtful) comments.

This consideration was made because if hostility is not the purpose of the

16

comment, it should not be classified as hateful. For example, “Trump is a bad

president” was not considered as hateful, but “Trump is an orange buffoon” was

considered as hateful. Also, the annotators considered linguistic patterns when

annotating, such that swearing, aggressive comments, or mentioning past political

or ethnic conflicts in a nonconstructive and harmful way, were classified as

hateful. When there was uncertainty about an instance, the researchers discussed it

to avoid a biased label.

2.1.3 Twitter dataset

In the dataset DAVIDSON‑ 17‑ ICWSM [11], this dataset is made available by

Davidson et al. [13] who used crowd raters for labeling and provide a detailed

description of the data collection principles. The dataset contains 25K tweets,

randomly sampled from 85.4 M tweets extracted from the timeline of 33,458

Twitter users, using hate speech lexicon. The lexicon, compiled from Hatebase,

contains words and phrases identified by internet users as hate speech.

This lexicon was also used by the authors as keywords to extract the 85.4 M

tweets. The selected 25K tweets were manually annotated by at least 3 workers

using CrowdFlower. The task was to annotate the tweet with one of three

categories: hate speech, offensive but not hate speech, or neither offensive nor

hate speech. An agreement of 92% was obtained between the workers regarding

the class labels for the task, and the final gold label for each tweet was assigned

using a majority voting approach. The tweets with no majority class were

discarded, making a total of 24,802 tweets with an assigned label of which 5%

was given the hateful label.

Note that the authors shared these tweets as “Tweet IDs”, i.e., references to the

original tweets. Therefore, we had to utilize the Twitter API to recollect the

dataset. We were able to obtain 24,783 tweets (99.9% of the original dataset),

with 19 tweets either deleted or otherwise unavailable. The less of only a small

number of comments is unlikely to have a significant impact on the results when

comparing our performance against that of Davidson et al.

17

2.2 Confusion Matrix

The confusion matrix for the full English alphabet as seen from the article by L.R.

GEYER [8] is a 26 by 26 array of stimulus-response probabilities. Each row represents

an individual stimulus letter, the main-diagonal cell is the correct response probability

for that letter, and incorrect responses generate off diagonal confusion probabilities.

Each row must sum to 1.0; column sums may vary from unity, and the variation is

sometimes taken as an estimate of response bias effects. With the help of this matrix we

can better detect masked bad words that have special characters e.g., !,@,#,$ etc., in

which these are visually similar to letters of the English alphabet.

Fig 2.1 below shows this matrix:

Fig 2.1 – Confusion matrix for lowercase letters of the English alphabet [8]

18

Further studies Showed that J. T. TOWNSEND [9] did a similar confusion matrix

using uppercase letters of the English alphabet and used a few different approaches that

gave different probabilities. The best one is shown in Fig 2.2 below:

Fig 2.2 – Confusion matrix for uppercase letters of the English alphabet [9]

19

2.3 Metrics for words similarity

Edit distance is an important class of string metrics, which determines the distance

between two strings S and T by calculating the cost of best sequence of edit operations

that convert S to T. Typical edit operations are character insertion, deletion, and

substitution, and transposition. There are several variants to calculate the edit distance

depending on which edit operations are allowed [15].

2.3.1 Levenshtein Distance

Research carried out by AOURAGH SI LHOUSSAIN [10] tells us that The

Metric method introduced by Levenshtein [20] measures the similarity between two

words by calculating an edit distance. The edit distance is defined as the minimum

number of basic editing operations needed to transform a wrong word to a dictionary

word. Thus, to correct a wrong word, one retains a set of solutions requiring fewer

possible editing operations.[10]

The procedure for calculating the Levenshtein distance between two strings X =

x1x2 ...xm of length m and Y= y1y2...ym of length n, is to calculate step by step in a matrix

of order m × n edit distance between different sub-strings of X and Y. The corresponding

values are stored in the matrix up to the box (m,n) which expresses the minimum

distance between X and Y.[10]

The calculation of the cell (i , j), which corresponds to the edit distance between

sub-strings of 𝑋𝑖
1 = x1x2…xi and 𝑌𝑗

1 = y1y2…yj , is given by the following recursive

relationship:

𝐷(𝑖, 𝑗) = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚{𝐷(𝑖 − 1, 𝑗) + 1; 𝐷(𝑖, 𝑗 − 1) + 1; 𝐷(𝑖 − 1, 𝑗 − 1) + cos 𝑡},

Where cos 𝑡 = {
0 𝑖𝑓 𝑥1−𝑖 = 𝑦𝑗−1

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 .

Thus, the following boots: 𝐷(𝑖, ∅) = 𝑖 𝑎𝑛𝑑 𝐷(∅, 𝑗) = 𝑗 , where ∅ is the empty string.

[10]

20

The following steps show how to construct the matrix in Fig 5:

1. Construct a matrix d containing M rows and N columns.

2. Initialize the first row from 0 to M and first column from 0 to N.

3. Examine each character of S (i from 1 to M) and each character of T (j from 1 to N).

4. If S[i] equals T[j], the cost is 0. Otherwise, the cost is 1.

5. Set cell d [i, j] of the matrix equal to the minimum of:

A. The cell immediately above plus 1: d [i-1, j] + 1.

B. The cell immediately to the left plus 1: d [i, j-1] + 1.

C. The cell diagonally above and to the left plus the cost: d [i-1, j-1] + cost.

6. After the iteration steps (3, 4 and 5) are complete, the distance is found in cell d

[N,M].

Fig 2.3 - Example of Levenshtein distance [15]

21

2.3.2 Hamming distance

Hamming distance [16] allows only edit operation of substitution to transform S into T.

Therefore, the length between S and T is the same. This algorithm is often used for error detection and

correction for two strings with the same lengths [15].

2.3.3 Damerau–Levenshtein distance

Damerau–Levenshtein distance [17] is quite like Levenshtein distance. The only

difference is that Damerau–Levenshtein distance allows one more edit operation: the

transposition of two adjacent characters [15].

2.3.4 Q-gram

Q-gram is a consecutive substring of size that can be used as a signature of the entire

string. Q-gram is typically used in approximate string matching by sliding a window of

length q over the characters of a string to create several substrings. Since Q-gram can

have fewer than q characters, characters “#” and “%” are used to extend the string by

prefixing it with q-1 occurrences of “#” and suffixing it with q-1 occurrences of “%”.

When q equals to 1, the Q-gram is the same as edit distance. The foundation of the use

of Q-gram is that when S and T are within a small edit distance of each other, they share

many Q-gram in common. Getting the Q-gram for two query strings makes the count of

identical Q-gram of these two strings and the total Q-gram available. The algorithm

contains the following steps [15].

1. Extend the string by prefixing it with q-1 occurrences of “#” and suffixing it

with q-1 occurrences of “%”.

2. Split the S and T into two sets of Q-gram arrayS, arrayT.

3. Get the total grams number L by adding number of grams in S and T.

4. Combine two sets of Q-gram arrayS and arrayT to a set of Q-gram arrayTotal.

5. Remove the duplicate Q-gram in arrayTotal.

6. Calculate the number m1 of same Q-gram shared between arrayS and

arrayTotal.

22

7. Calculate the number m2 of same Q-gram shared between arrayT and

arrayTotal.

8. Calculate the absolute value difference by |m1-m2|.

9. The similarity of Q-gram is calculated as below:

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝐿−𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝐿
 .

2.3.5 Cosine similarity

Cosine similarity is a vector-based similarity measure. Cosine of two vectors a, b can be

derived by using the Euclidean dot product formula. [15]

𝑎. 𝑏 = |𝑎‖𝑏| cos 𝜃

Where, 𝜃 represents the angle between a and b.

The input string is transformed into vector space in order to apply the Euclidean cosine

rule to determine similarity. The algorithm contains the following steps.

1. Split the S and T into two sets of 2-gram arrayS, arrayT.

2. Remove the duplicate 2-gram in arrayS, arrayT and get the number L1, L2 of

2-gram in arrayS and arrayT.

3. Combine two sets of 2-gram arrayS and arrayT to a new of 2-gram arrayTotal,

remove the duplicate 2-gram in arrayTotal, and get the number L of 2-gram in

arrayTotal.

4. The variable C is calculated as follows.

𝐶 = (𝐿1 + 𝐿2) − 𝐿

23

5. The cosine similarity is calculated as follows.

𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝐶

√𝐿1 . √𝐿2

2.3.6 Dice coefficient

Dice coefficient [18], named after Lee Raymond Dice and known as the Dice's

coefficient, is a term-based similarity measure. It is calculated as follows: [15]

𝐷𝑖𝑐𝑒𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
2 × 𝐶

𝐿1 + 𝐿2

Where C is the number of character bigrams found in both strings S and T, L1 is the

number of unique bigrams in string S and L2 is the number of unique bigrams in string T.

The algorithm contains the following steps:

1. Split the S and T into two sets of 2-gram arrayS, arrayT.

2. Remove the duplicate 2-gram in arrayS, arrayT and get the number L1, L2 of

2-gram in arrayS and arrayT.

3. Combine two sets of 2-gram arrayS and arrayT to a new set of 2-gram

arrayTotal, remove the duplicate 2-gram in arrayTotal, and get the number L of 2-

gram in arrayTotal.

4. The variable C is calculated as follows:

𝐶 = (𝐿1 + 𝐿2) − 𝐿

5. The dice coefficient is calculated as follows:

𝐷𝑖𝑐𝑒𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
2 × 𝐶

𝐿1 + 𝐿2

24

2.4 Algorithms for masked bad words detection

Firstly, we need look at the confusion matrix and find out very similar symbols, with

high probabilities.

Then for each symbol form a candidate list of similar symbols.

From these, we will then generate a set of new candidate words from the given word

with the use of the symbol candidate list.

For example (symbol candidate list):

initial word "bear"

Candidate list for b – {d, o}

Candidate list for e – {o, c}

Candidate list for a – {o, z}

Candidate list for r – {k}

Generating new words (new candidate words):

dear, oear, boar, bcar, beor, becr, beak

generating a list of these candidate words:

doar dcar deor dezr deak

ooar odcar oeor oezr oeak

boor bozr boak

bcor bczr bcak

beok bezk

25

After this we can then check our set of generated candidate words against our bad word

dictionary and count the number of bad words produced. The more bad words produced

then the more likely that the source word is a bad word.

In order to check the similarity of these words we can use the help of the Lavenshtein

Distance.

The algorithm for Lavenshtein Distance used to detect word similarity is as follows [15]:

int LavenshteinDistance(char S[1..M], char T[1..N]){

 declare int d[0..M, 0..N]

 for i from 0 to M

 d[i,0] := i //the distance of any first string to an empty second string

 for j from 0 to N

 d[0,j] := j //the distance of any second string to an empty first string

 for j from 1 to N

 {

 for i from 1 to M

 {

 if S[i] = T[j] then

 d[i,j] := d[i-1,j-1] //no operation required

 else d[i,j] := minimum(d[i-1,j] + 1, //a deletetion

 d[i,j-1] + 1, //an insertion

 d[i-1,j-1] + 1) //a substitution

 }

 }

 return d[M,N]

}

The above algorithm gives us the idea behind the calculation of the Lavenshtein

Distance.

26

2.5 Conclusions on the second Chapter

After some research on some metrics for word similarity, our approach found it feasible

to use the Lavenshtein Edit distance. This is because it will make it easier for us to be

able to compare our masked bad word to our known bad word vocabularies that we use

for training purposes.

We will also use the confusion matrix of the English alphabetical letters in both

uppercase and lowercase so that we can identify special characters that are not English

alphabetical letters and to identify those letters that have a high probability of being

visually similar to each other.

For our training data and bad word vocabularies, we have identified several that have

already been classified as bad words or fall under hate speech. Some datasets that we

will use are not just words but are entire comments, in these comments we can find one

or two words that would be labelled as bad words and we think this would be beneficial

in training our algorithm to identify these bad words within comments in social media.

27

Chapter 3

Developing the software

3.1 Choosing Developing tools

For the task of classifying whether a word is a bad word or not we will use the help of

libraries in scikit learn in python.

For this we looked in the Python Package Index (PyPI) for any existing libraries that

could do this for me. The Only appropriate libraries we could find were the following:

 profanity (the ideal package name)

 better-profanity: “Inspired from package profanity of Ben Friedland, this library

is much faster than the original one.”

 profanityfilter (has 31 Github stars, which is 30 more than most of the other

results have)

 profanity-filter (uses Machine Learning, enough said?!)

The profanity library contained a word list that had about 32 bad words shown below in

fig 6:

https://pypi.org/
https://pypi.org/project/profanity/
https://pypi.org/project/better-profanity/
https://github.com/ben174/profanity
https://github.com/ben174
https://pypi.org/project/profanityfilter/
https://pypi.org/project/profanity-filter/

28

Fig 3.1 - Word list in profanity library

The above libraries will be sufficient enough to train our algorithm to identify known

bad words to begin with. better-profanity uses a 140-word wordlist and

profanityfilter uses a 418-word wordlist and the libraries detect bad words by simply

looking for one of these words in the word list so we can easily use these with the

Lavenshtein Distance for word similarities.

29

For the task of vectorization of the word we will use the Bag of words approach.

For this we will use the scikit-learn's CountVectorizer class, which basically turns any

text string into a vector by counting how many times each given word appears.

If the only words in the English language were ‘the’, ‘cat’, ‘sat’, and ‘hat’, a possible

vectorization of the sentence the cat sat in the hat might be as follows:

Table 3.1 Vectorization of words

the cat sat hat ???

2 1 1 1 1

The ‘???’ represents any unknown word, which for this sentence is ‘in’. Any sentence

can be represented in this way as counts of ‘the’, ‘cat’, ‘sat’, ‘hat’, and ‘???’!

A count of the words can then be represented as shown in table 3.2 below:

Table 3.2 –Bag of words representation

Sentence Bag of words representation

The cat sat [1,1,1,0,0]

Hat on a cat [0,1,0,1,2]

Cat cat cat cat cat [0,5,0,0,0]

In order to cater for the vast amount of words in the English language we will use the

method “fit_transform()” which will do two of the following steps:

1) Fit – learns a vocabulary by looking at all words that appear in the dataset.

2) Transform: turns each text string in the dataset into its vector form.

For the task of training the algorithm we will use a Linear Support Vector Machine

(SVM), which is implemented by scikit-learn's LinearSVC class.

The reason behind this decision is because the model learns which words are “bad” and

how “bad” they are because those words appear more often in offensive texts. It’s as if

the training process is picking out the “bad” words for us, which is much better than

using a wordlist we might write ourselves!

It’s fast enough to run in real-time yet robust enough to handle many different kinds of

profanity. The code for this process is found in Appendix A.

30

3.2 Future work and developments

Now this model is not good at picking up less common variants of profanities like “f4ck

you” or “you b1tch” because they don’t appear often enough in the training data. Our

goal will therefore be to try and take words that are detected through word similarities

using the Lavenshtein Distance and the confusion matrix of the English alphabet. Words

that are successfully classified as bad or profane will then be able to be incorporated into

the training data so that our model can learn new variants of these masked bad words

therefore making it more effective in the detection of masked bad words in the future.

We will also be looking at a suitable software architecture to make our software more

efficient and effective.

References

31

1. Sood S. O., Antin J., Churchill E. Using crowdsourcing to improve profanity

detection // Proc. Of 2012 AAAI Spring Symposium Series. – 2012.

2. Indurthi V. et al. Identifying and Categorizing Offensive Language in Social

Media using Sentence Embeddings // Proc. of SemEval@NAACL-HLT 2019. –

2019.

3. Pavlopoulos J. et al. Convai at semeval-2019 task 6: Offensive language

identification and categorization with perspective and bert // Proceedings of the

13th international Workshop on Semantic Evaluation. – 2019. – P. 571-576.

4. Thenmozhi D. et al. SSN_NLP at SemEval-2019 Task 6: Offensive Language

Identification in Social Media using Traditional and Deep Machine Learning

Approaches //Proceedings of the 13th International Workshop on Semantic

Evaluation. – 2019. – P. 739-744.

5. Pathak V. et al. KBCNMUJAL@ HASOC-Dravidian-CodeMix-FIRE2020: Using

Machine Learning for Detection of Hate Speech and Offensive Code-Mixed

Social Media text //arXiv preprint arXiv:2102.09866. – 2021.

6. Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.

2002. Smote: synthetic minority over-sampling technique. Journal of artificial

intelligence research, 16:321–357.

7. Shastay A. Misidentification of Alphanumeric Symbols in Both Handwritten and

Computer-Generated Information //Home healthcare now. – 2015. – Vol. 33. –

№6. – P. 338-339.

8. L.R. GEYER, Recognition and confusion of the lowercase alphabet

Perception & Psychophysics 1977, Vol. 22 (5),487-490

9. J. T. TOWNSEND, Theoretical analysis of an alphabetic confusion matrix

Perception & Psychophysics, 1971, Vol. 9 (IA)

10. A. SI LHOUSSAIN, Adapting the Levenshtein distance to contextual spelling

correction.

11. Joni Salminen, Developing an online hate classifier for multiple social media

platforms.

12. Salminen J, et al. Anatomy of online hate: developing a taxonomy and machine

learning models for identifying and classifying hate in online news media. In:

Proceedings of the international AAAI conference on web and social media

(ICWSM 2018), San Francisco; 2018

13. Davidson T, et al. Automated hate speech detection and the problem of offensive

language. In: Proceedings of eleventh international AAAI conference on web and

social media, Montreal; 2017. P. 512–5

14. Bad bad words dataset, https://www.kaggle.com/nicapotato/bad-bad-words

15. Hao Chen, String Metrics and Word Similarity applied to Information Retrieval.

2012

16. W. R, Hamming, “Error detecting and error correcting codes,” Bell System

Technical Journal 29, pp. 147–160, 1950.

https://www.kaggle.com/nicapotato/bad-bad-words

32

17. F.J. Damerau, “A technique for computer detection and correction of spelling

errors,” Communications of the ACM, 1964, pp. 171-176.

18. L.R. Dice, “Measures of the Amount of Ecologic Association Between Species,”

Ecology 26, pp. 297–302, 1945.

19. Joachims, Thorsten. 1998. Text categorization with Support Vector Machines:

Learning with many relevant features. In Machine Learning: ECML-98, ed. Claire

Nédellec and Céline Rouveirol, 1398:137-142. Berlin/Heidelberg: Springer-

Verlag. http://www.springerlink.com/content/drhq581108850171/.

20. Levenshtein, V I. 1966. “Binary codes capable of correcting deletions, insertions,

and reversals.” Soviet Physics Doklady 10 (8): 707-710.

http://www.springerlink.com/content/drhq581108850171/

33

Appendix A

import pandas as pd

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.calibration import CalibratedClassifierCV

from sklearn.svm import LinearSVC

from sklearn.externals import joblib

Read in data

data = pd.read_csv('clean_data.csv')

texts = data['text'].astype(str)

y = data['is_offensive']

Vectorize the text

vectorizer = CountVectorizer(stop_words='english', min_df=0.0001)

X = vectorizer.fit_transform(texts)

Train the model

model = LinearSVC(class_weight="balanced", dual=False, tol=1e-2, max_iter=1e5)

cclf = CalibratedClassifierCV(base_estimator=model)

cclf.fit(X, y)

Save the model

joblib.dump(vectorizer, 'vectorizer.joblib')

joblib.dump(cclf, 'model.joblib')

